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An approximate analytic solution is found to the problem of the v ib ra t iona l - t r ans l a t iona l  r e -  
laxation of anharmonic  osc i l l a to rs  at t rans la t ional  t empera tu res  which are  small  compared  
with the energy difference between adjacent levels of the osci l la tor .  The deviation of the ob- 
tained distribution from the Boltzmann distribution in the relaxation p roce s s  is analyzed. A 
study is made of the behavior  of the vibrational  energy near  equilibrium at t empe ra tu r e s  such 
that dissociat ion has only a small  effect on the ra te  of vibrational relaxation. 

The v ib ra t iona l - t r ans l a t iona l  relaxation of molecules  regarded  as harmonic  osc i l la tors  was thoroughly 
studied by Montroll and Shuler [1]. It is  known, however,  that allowing for anharmonici ty of the vibrat ions 
leads to significant changes in the cha rac t e r  of the relaxation. Numer ica l  solutions have been obtained [2, 3] 
to the rate  equations descr ibing the relaxation of a smal l  admixture of anharmonic osc i l l a to r  molecules  in an 
iner t  gas. A c lass ica l  study of the kinetics of this p roce s s  is made in [4, 5], where  a diffusion equation for 
the distr ibution function of the molecules  over  vibrational  energy is obtained and the resul ts  of a numer ica l  
solution of this  equation a re  presented.  

In the presen t  paper  the vibrat ional  relaxation of anharmonic osc i l l a to rs  in an iner t  gas is investigated 
analytically for  the case when the t ransla t ional  t empera tu re  is smal l  compared  with the energy difference be-  
tween two adjacent osc i l l a to r  energy levels.  We note that the obtained solution also descr ibes  the relaxation 
of a small  admixture of molecules  in a medium of molecules  of another  sort  with an equilibrium vibrational 
distribution. In this case,  by the t rans i t ion  probabil i t ies  between levels one must  understand the total p roba-  
bil i t ies of v ib ra t i ona l - t r ans l a t i ona l  exchange and quantum exchange between the added molecules  and the 
molecules  of the surrounding gas. Conditions are  considered when recombinat ion and dissociat ion are  ins ig-  
nificant. A set of conditions of this  sort  obtains in the relaxation after the terminat ion of an exciting pulse 
(photolysis,  e lec t r ica l  discharge,  l a s e r  i l lumination) of a small  admixture of molecules  in a medium of inert  
atoms o r  molecules  if the vibrational levels of the la t ter  are  not excited. 

w In the set of equations for the populations N k ( k = 0, 1 , . . . ,  m are the numbers  of the vibrational  
levels)  we allow only for single-quantum t ransi t ions ,  since at low t empera tu res  multiquantum t ransi t ions  are  
important  only in a small  group of high-lying levels  [6]. We then have 

E k .  ~ --  E k Ek - -  Ek__ l 
dVs'~ = P~-I ~ ( N j : l  -- e T Nk ) --  P~..'~:-I (.V~ -- e r N~.-I), (1.1) 

dt . . . . . .  

where  E k is the energy of  the k- th  level (E0 = 0 ) ; Pk*  t,k is the probabil i ty pe r  unit t ime of the t ransi t ion 
k + 1 -~ k; and T is the t empera tu re  of the gas. The solution of the l inear  set (1.1) can be wri t ten 

N~ (t) = ~ a~.e -'~l (1,2) 
l = 0  

where  #l is the l - t h  eigenvalue, and a/k is the k- th  component of the l - t h  eigenvector.  

The mat r ix  of sys tem (1.1) is  symmet r i zed  on going from N k to the new var iable  N k exp{ Ek /2T  } [7] ; 
accordingly,  the e igenvectors  sat isfy the following orthogonali ty condition: 

a~a;e ek/r : ~.z~zn (1.3) 
k=O 
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where  Xl i s  a no rma l i z ing  fac tor ,  and 5/n i s  the K r o n e c k e r  delta. The quanti t ies ~l a re  found f rom the 
ini t ial  conditions 

alkZ = ~ N k (0)e~k/ra~. (1.4) 

In th is  man ne r ,  the p r o b l e m  reduces  to finding the e igenvalues  and e igenvec to r s  of  sys t em (1.1). 

Since t r ans i t i ons  between l eve l s  do not affect  the to ta l  number  of molecu les ,  it follows f rom (1.2) that 
~0 = 0, a~ = e x p ( - E k / T } .  The  components  of  v e c t o r s  with l r mus t  sa t i s fy  the condition 

�9 s ~  = 0 ,  (1 .5 )  

where 
k l 

&' = Z a i .  
i=O  

Inse r t ing  (1.2) into (1.1) g ives  an a lgeb ra i c  s y s t e m  of equations f rom which, by the method of double 
summat ion ,  we obtain the re la t ionship  

a~=~ ~ ~ - ~ , Z  �9 s (1 .6 )  
j = O  P j + I , j  

(here we have taken a~ = i; the choice of a / determines the value of M). 

Relationship (1.6) is an exact consequence of system (I.I). It yields the eigenvectors and eigenvalues in 

the form of a series in the quantities c I = e -(El - E/-I)/T,. At low temperatures we may restrict ourselves 

to the leading terms of the series. We calculate below the leading terms of ~/l and a/, and also the correc- 
tion of the first order in e I to /~l. 

To calculate /z I in the zeroth order in el we retain in the right side of (1.6) the largest term. Since 

4 = S~k - S~-I '  Eq. (1.6) can  be  b rough t  to the f o r m  

k =  ! S~-1. (1.7) 
Plr , h - -  1 

We r e p r e s e n t  the  solution of r e c u r r e n c e  re la t ion  (1.7) in the fo rm 

i = t  P i , i - - I  

and, uti l izing (1.5), we obtain the e igenvalues  #l = Pl, l - t ( /  = 1, 2 . . . .  , m ) .  Express ion  (1.8) also gives the 
components  a/k with k - 1: 

Ph,h- -1  i=a 1 , ' P i , i - -1  

which a r e  of  zero th  o r d e r  in e l .  

The leading t e r m s  of the components  ~/+ n for  n _> 1 a re  of the n- th  o r d e r  of sma l lnes s  in, e l ,  and to 

ca lcula te  them we mus t  re ta in  in (1.6) the (n + 1 ) - t h  t e r m .  R e m e m b e r i n g  that  in the k - th  o r d e r  SI+ k = 0, we 
obtain 

' p \ El%n--El-~h~ 
, ( , , , -1 ) ~ - '  . v , , , _ ,  al+~ (1 .10)  at+n i - -  . = ~. e -  r 

P~+n, l ~ , n - 1 ]  i="-'0 . Plq-i, l + i - - t  

for  n >-- 1. On solving r e c u r r e n c e  re la t ion  (1.10) we finally obtain for  k > l 

Ek--EZ ~, I--1 (1.11) 
Z ~ + t ,  k ' 

Thus,  (1.9) and (1.11) give the components  of  the  l - th  e igenvec tor  cor responding  to the  e igenvalue #l = P / , I -1 .  

The  no rma l i z ing  fac to r  kl  can also be  r e p r e s e n t e d  as a s e r i e s  in E l .  Inse r t ing  into (1.3) the  found 
components  of  the e igenvec to r s  and r e s t r i c t i n g  o u r s e l v e s  to the  leading t e r m  of the  s e r i e s  cor responding  to 
the contr ibut ion of  a / ,  we obtain 

b 
E l  

s = e ~- (Z~,z_l) 2. 

146 



Let us now calculate the cor rec t ions  
we represen t  the eigenvalues in the form 

sl  + ~',+~ = o, 

where  t e r m s  of the f i rs t  o r d e r  in Ol must  be re ta ined in S~. 
t e r m s  in the summation,  we obtain after  some manipulation 

E l - -  El__ l 

T 

t Pl--J, t--2 
PL z - i  

01 to the eigenvalues ~l in the f i rs t  o r d e r  in el, for which purpose 

Returning again to (1.6) and allowing for two 

El+i--El 

~l ,  l - - I  
P;+~.l 

(1.12) 

[to calculate 0l for l = 1 we set in (1.12) P/-1,  l -  2 = 0]. It can be seen from this express ion that the c o r r e c -  
tion 0l can become quite significant on the upper levels,  where  el becomes  close to unity. As far  as the com- 
ponents of the e igenvectors  a~  are  concerned, for large  k o r  l it is also neces sa ry  to allow for the next 
t e r m s  in the i r  expansion. Neglect of these  t e r m s  leads to an inexact descr ipt ion of the relaxation of h igher-  
lying levels  with k numbers  for  which c k ~ 1. 

w 2. Formulas  (1.2) and (1.4) in conjunction with the express ions  obtained above for /*l, 4 ,  and kl en- 
able us to wr i te  out the solution of set (1.1) for specific initial conditions. Let us consider  a few of the most  
cha rac te r i s t i c  pa r t i cu la r  cases.  

Suppose the initial distribution is a Boltzmann distribution with t empera tu re  T V > T. F rom (1.4), r e -  
s t r ic t ing ourse lves  to the leading t e r m  of the se r ies  in e l ,  we obtain 

m 

~ i '%' ~ i,,- , 
"/i i*  . l ~-7 e - - E h  T v  h=i  " - : - , "  I Zt, ~--J 

v h=-'o 

, z > l ,  
(2.1) 

where  NM = ~ N k is the total number  of molecules.  Inser t ing these values into (1.2) gives the solution of 
h=0  

set (1.1). The form of the solution is simplest  w h e n T v  < E 1. Rest r ic t ing ourse lves  in {2.1) and (1.2) to the 

leading t e r m s  in e - (Ek - E k - i J / T v ,  we find that the distribution in the p roces s  of relaxation is given by 

E/ E! E;: 

Ei: V --p:t --  Yi" T T 
Nk(t) = e - - - T - =  ~ .  e ~' (2.2) 

h ~  Z t 
l = I  . tZ-l,h 

We note that [by (2.2)] only t e r m s  with l __< k contribute to Nk( t ) ;  accordingly,  the e r r o r  in the calcu-  
lation of /~l at la rge  l connected with the inc rease  of e l on the upper levels does not affect the descript ion of 
the relaxation of the lower levels.  Fur the rmore ,  the populations Nk( t )  do not depend on the level number  m 
(if m _> k).  At la rge  TV one cannot r e s t r i c t  oneself  to the contribution to C~l f rom only a single t e rm of the 
summation in (2.1). We note, however,  that X~. i k '  calculated with the normal ly  used t rans i t ion  probabil i t ies  
dec reases  slowly with increas ing  k. Accordingly', even at large TV the imprec is ion  in the values of aid for 
l a rge  k (e k ~ 1) does not s i ~ f i c a n t l y  affect the values of al  for el << 1. Only the values of al for large l 
may  be computed imprec ise ly .  This, however,  leads to an e r r o r  in the calculation of the distribution on lower 
levels  only at small  t imes  t << P~01 due to the rapid decrease  of the tempora l  exponentials in (1.2) cor respond-  
ing to la rge  l. The effect on the populations of the choice of m can be establ ished by analogous cons idera-  
tions. If m is sufficiently large,  then only at t imes  t << p~l is it possible  for  the distribution on lower levels 
to depend on m. 

Let us consider  the behavior  of solution (2.2) at t imes  t >> r = P~I0, when only the t e rm with l = 1 may 

be retained in the summation over  l .  Introducing Tl(t) through the relationship N1/N 0 = e -E1 /T l ,  we obtain 

N~ (t) e, i ! (2.3) 
N~, -- Ek T T , ( t )  }r 

~exp / r " , - - " '  
�9 ~2, 1r " 

From (2.3) we have immedia te ly  for  the harmonic  osc i l l a to r  • = 1 /k  
2,k 
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N~(t)/NM = exp{-- Ek/Tl(t)}. 

An anharmonic  osc i l l a to r  is cha rac t e r i zed  by a Pk,k-1 which inc reases  m o r e  rapidly with level number  and 
which can be represen ted  in the form [8] 

Ph, h-1 = kP10 e(~-l)6, 

where  5 > 0. In this case X�89 k > l / k ,  so that the distribution on levels with numbers  k > 1 is displaced 
downward f rom the Boltzm~{n distribution with Tl(t) (compared  with the harmonic  osci l la tor ,  the anhar-  
monic  osc i l l a to r  is cha rac te r i zed  not only by a more  rapid growth of Pk,k-1,  but also by a s tower growth of 
E k with increas ing  k; the la t ter  c i rcumstance ,  however,  has a much weaker  effect on the cha rac te r  of the 
relaxation at low tempera tures ) .  

Relaxation for  the case  T V < T c a n b e  invest igated in a s imi la r  manner  (as before,  we consider  
- E I / T  

e << 1). For  sufficiently la rge  t imes  the distribution in this case also has the form (2.3) (but with a 
different T1) ; the difference 1 /T  - 1 /T  1 now has the opposite sign, and the distribution is displaced upward 
f rom a Boltzmann distribution with TI ( t ) .  At t imes  t <~ T the distribution does not have the simple form 
(2.3) and the simple p ic ture  of a distribution displaced f rom a Boltzmann distribution is no longer possible;  
the cha rac t e r  of the displacement  at these  t imes  is,  however,  the same as for  t >> r. 

It can be seen f rom (2.3) that with increas ing  5, decreas ing  T [8] also inc reases  the deviation of the 
distr ibution f rom a Boltzmann distr ibution upward for  TV < T, or  downward  for T V > T. 

We now discuss  the relaxation for  the case of a 5 - fo rm initial distr ibution Nk(0) = NM6nk. Rest r ic t ing  
ourse lves  to leading t e r m s  in e I , it is  sufficient when calculating Nk(t) to retain in the summation over  l in 
(1.2) t e r m s  with l _< max{n ,  k}. If the level number  n is  such that E n << 1, then the relaxation of levels with 
numbers  k for which Ok<< 1 is  descr ibed  cor rec t ly .  If, however,  O n ~ l ,  then all o~l, proport ional  by (1.4) 
to the component aZn, a re  imprec i se ly  computed and the relaxation for  all levels is accordingly unsat is fac-  
tor i ly  described.  

In this manner  it is  possible  to formulate  a c r i te r ion  for  the applicability of the resul ts  obtained above 
for  determining the populations of the lower levels :  at the initial moment  the molecules  should mainly be on 
levels  with numbers  k such that ek << 1. 

m 
w  Let us consider  the behavior  of the vibrat ional  energy Q(t)  = ~ EkNk(t) in the vicinity of equili-  

k=0  

br ium at gas t empe ra tu r e s  comparable  with and exceeding El. At t imes  t >> �9 it follows from (1.2) that 

dQ/dt = (Qeq- Q),~I, (3.1) 

where  Qeq is the equilibrium value of  Q. There  is in te res t  in this connection in the quantity /~1. The f irs t  
two t e r m s  in the expansion of/~l in e - E 1 / T  were  calculated above. With increas ing  T a l a rge r  number  of 
t e r m s  must  be taken into account. We calculate the cor rec t ion  of the next o r d e r  to ~1, allowing for  anhar-  
monici ty  only in the probabil i t ies  Pk, k-1 and assuming the osc i l l a to r  levels to be equidistant (E k = kE1 ) 
[8, 9]: 

(3.2) 
[~*=Plo t 2e ~ - I  (2e b - i )  zC3e z 6 - i ) } "  

With increas in~ t empera tu re  there  appears  in the expansion, in place of e - E l / T ,  another small  p a r a m e t e r  
e 6 - 1  ( 5 ~ T -172 [8]). The ratio of the last  t e r m  in (3.2) to the one preceding it is  at i ts grea tes t  when T ~- E 1 
and amounts to ~10 -z for  an admixture of O z molecules  in Ar. Evidently, subsequent t e r m s  in the expansion 
of /~l will make a smal l  contribution as well,  since all of them contain the small  p a r a m e t e r  e 5 - 1 [for 5 = 0 

�9 ' e_EI/T)]. 
the first two terms in (3.2) give the exact value of ~I for the harmonic oscillator: ~I = Pl0( 1 - Ac- 
cordingly, for all temperatures of the gas (such that dissociation still has no significant effect on the vibra- 

tional relaxation) it is sufficient to restrict ourselves to two terms in (3.2). 

Loser et al. [9] obtained an equation of the form (3.1) with the quantity ~i dependent on the vibrational 

energy on the supposition of a Boltzmann distribution of the molecules over the vibrational levels. The same 

sort of dependence of the transition probabilities and vibrational energy on level number was assumed as in 
the calculation of (3.2). Let us compare (3.2) with the limiting value of ]zl obtained in [9] as the vibrational 
temperature tends toward the translational. Both (3.2) and [9] give a value of /~I that exceeds the correspond- 
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ing value for the harmonic oscillator, although (3.2) gives a slightly smaller value than [9]. This result can 
be understood by referring to formula (2.3), which describes the relaxation for t >> 7. The upper levels devi- 
ate from a Boltzmann distribution with Ti(t)  in the direction of the equilibrium distribution and, accordingly, 
make a smaller  contribution to the rate of relaxation of energy than follows from [9]. 

The author wishes to thank M. B. Zheleznyak and A. Kh. Mnatsakanyan for a useful discussion of the 
work. 
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